Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization
نویسندگان
چکیده
منابع مشابه
A Novel Hybrid Modified Binary Particle Swarm Optimization Algorithm for the Uncertain p-Median Location Problem
Here, we investigate the classical p-median location problem on a network in which the vertex weights and the distances between vertices are uncertain. We propose a programming model for the uncertain p-median location problem with tail value at risk objective. Then, we show that it is NP-hard. Therefore, a novel hybrid modified binary particle swarm optimization algorithm is presented to obtai...
متن کاملGene selection using hybrid particle swarm optimization and genetic algorithm
Selecting high discriminative genes from gene expression data has become an important research. Not only can this improve the performance of cancer classification, but it can also cut down the cost of medical diagnoses when a large number of noisy, redundant genes are filtered. In this paper, a hybrid Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) method is used for gene selection...
متن کاملAdaptive feature selection using v-shaped binary particle swarm optimization
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their...
متن کاملCancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm
Cancer investigations in microarray data play a major role in cancer analysis and the treatment. Cancer microarray data consists of complex gene expressed patterns of cancer. In this article, a Multi-Objective Binary Particle Swarm Optimization (MOBPSO) algorithm is proposed for analyzing cancer gene expression data. Due to its high dimensionality, a fast heuristic based pre-processing techniqu...
متن کاملCatfish Binary Particle Swarm Optimization for Feature Selection
The feature selection process constitutes a commonly encountered problem of global combinatorial optimization. This process reduces the number of features by removing irrelevant, noisy, and redundant data, thus resulting in acceptable classification accuracy. Feature selection is a preprocessing technique with great importance in the fields of data analysis and information retrieval processing,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genomics
سال: 2019
ISSN: 0888-7543
DOI: 10.1016/j.ygeno.2018.04.004